play-rounded-fill
Новости

Ученые из России создали алгоритм снижения выбросов CO2 при обучении нейросетей

Российские ученые создали алгоритм, который позволяет сократить выбросы CO2 при обучении систем ИИ путем подбора облачных сервисов для этой процедуры с учетом стоимости электроэнергии и других показателей, влияющих на углеродный след нейросетей.

При выполнении кода новая библиотека рассчитывает фактическое энергопотребление центральных и графических процессоров, а также устройств хранения данных и оценивает углеродный след с учетом региональных норм углеродной стоимости вырабатываемой электроэнергии.

Разработанный специалистами Института искусственного интеллекта AIRI алгоритм позволит значительно сократить выбросы CO2, связанные с процедурой обучения нейросетей. Это длительный и достаточно энергоемкий процесс, в рамках которого разрабатываемые системы ИИ анализируют огромные объемы специально размеченных данных.

Ученые разработали алгоритм, который позволяет отслеживать, как много энергии потребляется на разных этапах обучения систем и конвертировать эти показатели в объемы выбросов CO2. Встроенная нейросеть использует эти данные для выбора одного из 13 облачных сервисов в разных регионах мира, при использовании которого процесс обучения системы ИИ будет оставлять минимальный углеродный след. Так исследователи называют условный показатель количества энергии, затраченной на тот или иной процесс.

В некоторых удачных случаях, как показали первые предварительные проверки подхода, он позволяет сократить выбросы примерно на 90%. Этот алгоритм, получивший имя Eco4cast, был опубликован в открытом доступе, то есть свободен для использования всеми желающими. Как надеются ученые, их разработка поможет снизить затраты на обучение нейросетей и уменьшить связанные с этим процессом выбросы парниковых газов.

Источник: nauka.tass.ru